Mosquitoes threaten over half of the world’s population through vectored diseases such as malaria, zika, yellow fever, dengue, and chikungunya. Mosquitoes have a highly developed olfactory system attuned to chemotaxis relating to host-seeking, mating, and oviposition behavior. In this study, we aimed to determine the spatial efficacy of 2 plant-based repellent blends (Blend3 and Blend4 that had previously been found to successfully repel Aedes, Anopheles and Culex mosquitoes in wind tunnel assays) in excluding Aedes aegypti from the window entry. A new cage system was developed for parallel “no-choice” and “choice” olfactometric assays. In the no-choice trial, Blends 3 and 4, as well as commercial products (N, N-diethyl-3-methylbenzamide, p-menthane-3,8-diol [PMD], 3-(N-n-butyl-N-acetyl)-amino-propionic acid ethyl ester, and 2-(2-hydroxyethyl)-1-methylpropylstyrene 1-piperidine carboxylate), were adsorbed into filter papers of different sizes and placed in a window created between 2 attached bug dorms. Then, the number of mosquitoes entering the window was counted through a 6-min period. In choice olfactometric assays, Blends 3, 4, and PMD were adsorbed into filter paper and the number of mosquitoes moving away from Blend 3 and PMD were compared. No-choice assays showed that Blend3 (P < 0.001) and Blend4 (P = 0.0012) were more repellent than the best commercial product PMD. Additionally, while Blend 4 was significantly more repellent than Blend 3 (P = 0.012) in the choice assay, overall, these 2 blends show promise as new repellents for the spatial exclusion of Aedes aegypti from window entry alone or as part of a “push-pull’’ strategy.