This article reviews the bulk deformation processes for various aluminide and silicide intermetallic alloys with emphasis on the gamma titanium aluminide alloys. It summarizes the understanding of microstructure evolution and fracture behavior during thermomechanical processing of the gamma aluminides with particular reference to production scaleable techniques, including vacuum arc and cold-hearth melting, isothermal forging, conventional hot forging, and extrusion. The selection and design of manufacturing methods, in the context of processing-cost trade-offs for gamma titanium aluminide alloys, are also discussed.