2022
DOI: 10.1101/2022.02.18.481077
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Assessment and Optimization of the Interpretability of Machine Learning Models Applied to Transcriptomic Data

Abstract: Interpreting how the machine learning models make decisions is a new method to explore meaningful rules. However, it still lacks an understanding of the applicability of different model explainers in biological study. To address this question, we made a comprehensive evaluation on various explainers, and analyzed their performance and biological preference by quantifying the contribution of individual gene in the models trained to predict tissue type from transcriptome. Additionally, we also proposed a series … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 55 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?