Natural composites can be fabricated through reinforcing either synthetic or bio-based polymers with hydrophilic natural fibers. Ultimate moisture absorption resistance at the fiber–matrix interface can be achieved when hydrophilic natural fibers are used to reinforce biopolymers due to the high degree of compatibility between them. However, the cost of biopolymers is several times higher than that of their synthetic counterparts, which hinders their dissemination in various industries. In order to produce economically feasible natural composites, synthetic resins are frequently reinforced with hydrophilic fibers, which increases the incompatibility issues such as the creation of voids and delamination at fiber–matrix interfaces. Therefore, applying chemical and/or physical treatments to eliminate the aforementioned drawbacks is of primary importance. However, it is demonstrated through this review study that these treatments do not guarantee a sufficient improvement of the moisture absorption properties of natural composites, and the moisture treatments should be applied under the consideration of the following parameters: (i) type of hosting matrix; (ii) type of natural fiber; (iii) loading of natural fiber; (iv) the hybridization of natural fibers with mineral/synthetic counterparts; (v) implantation of nanofillers. Complete discussion about each of these parameters is developed through this study.