Using a methodical approach to the potential biological hazard (radiotoxicity) assessment of radionuclides, computational studies and a comparative analysis of the contributions to the total radiotoxicity of long-lived fission products and actinides accumulated in the nuclear fuel cycle of the Belarusian NPP were carried out. In order to estimate correctly the 237Np isotope mass at the long-term stage of SNF management, the mathematical model of the nuclear fuel cycle of the Belarusian NPP of the code CUB was modified to take into account the transmutation chain of 241Pu, 241Am and 237Np isotopes. The initial concentrations for the main radiation-hazardous radionuclides at the time of fuel unloading from the VVER1200 reactor core are presented in the database “Radiation Characteristics of Spent Nuclear Fuel of the Belarusian NPP” developed by the authors. The database development is carried out in accordance with the recommendations of the RB-093-20 “Radiation and thermophysical characteristics of spent nuclear fuel of pressurized water power reactors and high-power channel reactors”. The main characteristics used in the nuclear fuel cycle simulation in the CUB code, such as the total mass of spent nuclear fuel (2492 tons), the number of spent fuel assemblies (5294) and the average burnup, are taken in accordance with the Spent Fuel Management Strategy of the Belarusian NPP data. It is shown that at the stage up to 100 years, the main contributors to the total radiotoxicity are the isotopes of 238Pu, 239Pu, 240Pu, 243Am, 241Pu, 241Am, 237Np, where contributions of three last of them are 0.07, 49.0 and 0.007%, respectively. But 5000 years later, the contribution of 241Am will be 0.24%, and the isotope 237Np – up to 0.1% of the total actinides radiotoxicity. The results obtained can be used to substantiate for the recovery degree requirements of 237Np, 241Pu, 241Am during the SNF of the Belarusian NPP reprocessing.