In this study, flow cytometric analysis was used to evaluate the genetic stability of Passiflora cincinnata Mast. plants regenerated via primary and secondary somatic embryogenesis. Embryogenic calli obtained from culturing zygotic embryos on Murashige and Skoog (MS) medium containing 18.1 lM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.4 lM benzyladenine (BA) were transferred to differentiation medium. Torpedo and cotyledonary embryos were obtained. These primary embryos were maintained on differentiation medium to generate secondary embryos. Conversion of primary and secondary embryos yielded 305 and 138 normal plants, respectively. Almost 90% of plantlets survived following acclimatization. Flow cytometric analysis revealed that seed-derived plants had on average 3.01 pg nuclear DNA (2C), and all plants, except for a single plant regenerated via primary embryogenesis, maintained their ploidy. This single plant contained more than twice the average DNA content: 6.21 pg (4C). Epidermal stomata of leaves of the tetraploid plant were larger but lower in density than those of diploid plants, indicating that stomatal characteristics are useful in distinguishing between diploid and tetraploid plants of passion fruit. In summary, the procedure we employed to regenerated P. cincinnata plants via somatic embryogenesis generated mostly genetically true-to-type plants.