Poor access to electricity in rural communities has been linked to a poor educational system, as electricity is essential for supporting laboratories, technical practice, and long study hours for students. Therefore, this work presents the techno-economic analysis of a hybrid solar PV–agro-wastes (syngas) energy system for electricity, heat, and cooling generation to improve energy access in rural schools. The system is located in Ghana at Tuna (lat. 9°29′18.28″ N and long. 2°25′51.02″ W) and serves a secondary school for enhanced quality education. The system relies on agro-waste (gasifier-generator) and sunlight (solar PV), with a battery energy storage system, to meet the school’s energy demand. The study employs HOMER Pro Version 3.16.2 software to comprehensively analyze technical, economic, and environmental aspects. The system can generate 221,621 kWh of electricity (at a unit cost of electricity of 0.295 EUR/kWh) and 110,896 kWh of thermal energy yearly. The cost of electricity from the proposed system is cheaper than the cost of electricity from an equivalent diesel generator at 0.380 EUR/kWh. The thermal energy can meet the heating demand of the school in addition to powering a vapor absorption chiller. The system is environmentally friendly, with the capacity to sink 0.526 kg of CO2 yearly. Government policies that moderate interest rates for bioenergy/solar PV systems and social solution on feedstock pricing will favor the economic sustainability of the proposed system. The system will address the energy access challenge (SDG 7), enhance the quality of education (SDG 4), and contribute to climate mitigation through carbon sequestration (SDG 13).