The purpose of this study is to determine if arthroscopic shavers can effectively collect and process connective tissue progenitor (CTP) cells from subacromial bursal tissue for utilization in rotator cuff repair augmentation. Subacromial bursal tissue was collected and processed using two arthroscopic shavers, Shaver A and Shaver B, in 10 patients undergoing arthroscopic rotator cuff repair. Each shaver was used in a random order for the same patient. Tissue samples underwent testing for cellular proliferation, cellular concentration, number of colony-forming units (CFU), live/dead assay, fluorescence-activated cells sorting (FACS) analysis, cytokine analysis, and growth factor analysis. Shaver A produced more CFUs compared to Shaver B (210.3 vs. 125.9; p < 0.001). At 3 weeks, cells collected via Shaver A had greater cellular proliferation (0.35 vs. 0.51; p < 0.001) as well as more viable cells (214,773 vs. 132,356 cells/gram; p < 0.001). Tissue collected with Shaver B had greater amounts of the cytokines MMP-1 (3741 vs. 5500 pg/mL; p < 0.001), MMP-3 (1131 vs. 1871 pg/mL; p < 0.001), and MMP-13 (179 vs. 401 pg/mL; p < 0.001), while those collected with Shaver A had greater vascular endothelial growth factor (VEGF) (47.8 vs. 9.0 pg/mL; p < 0.05). Arthroscopic shavers are capable of harvesting and processing CTP cells from subacromial bursal tissue. Different shavers may produce different yields of viable CTP cells.