Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Assessing vegetation changes in alpine arid and fragile ecosystems is imperative for informed ecological restoration initiatives and adaptive ecosystem management. Previous studies primarily employed the Normalized Difference Vegetation Index (NDVI) to reveal vegetation dynamics, ignoring the spatial heterogeneity alterations caused by bare soil. In this study, we used a comprehensive analysis of NDVI and its spatial heterogeneity to examine the vegetation changes across the Three-River Headwaters Region (TRHR) over the past two decades. A random forest model was used to elucidate the underlying causes of these changes. We found that between 2000 and 2022, 9.4% of the regions exhibited significant changes in both NDVI and its spatial heterogeneity. These regions were categorized into six distinct types of vegetation change: improving conditions (62.1%), regrowing conditions (11.0%), slight degradation (16.2%), medium degradation (8.4%), severe degradation (2.0%), and desertification (0.3%). In comparison with steppe regions, meadows showed a greater proportion of improved conditions and medium degradation, whereas steppes had more instances of regrowth and slight degradation. Climate variables are the dominant factors that caused vegetation changes, with contributions to NDVI and spatial heterogeneity reaching 68.9% and 73.2%, respectively. Temperature is the primary driver of vegetation dynamics across the different types of change, with a more pronounced impact in meadows. In severely degraded steppe and meadow regions, grazing intensity emerged as the predominant driver of NDVI change, with an importance value exceeding 0.50. Notably, as degradation progressed from slight to severe, the significance of this factor correspondingly increased. Our findings can provide effective information for guiding the implementation of ecological restoration projects and the sustainable management of alpine arid ecosystems.
Assessing vegetation changes in alpine arid and fragile ecosystems is imperative for informed ecological restoration initiatives and adaptive ecosystem management. Previous studies primarily employed the Normalized Difference Vegetation Index (NDVI) to reveal vegetation dynamics, ignoring the spatial heterogeneity alterations caused by bare soil. In this study, we used a comprehensive analysis of NDVI and its spatial heterogeneity to examine the vegetation changes across the Three-River Headwaters Region (TRHR) over the past two decades. A random forest model was used to elucidate the underlying causes of these changes. We found that between 2000 and 2022, 9.4% of the regions exhibited significant changes in both NDVI and its spatial heterogeneity. These regions were categorized into six distinct types of vegetation change: improving conditions (62.1%), regrowing conditions (11.0%), slight degradation (16.2%), medium degradation (8.4%), severe degradation (2.0%), and desertification (0.3%). In comparison with steppe regions, meadows showed a greater proportion of improved conditions and medium degradation, whereas steppes had more instances of regrowth and slight degradation. Climate variables are the dominant factors that caused vegetation changes, with contributions to NDVI and spatial heterogeneity reaching 68.9% and 73.2%, respectively. Temperature is the primary driver of vegetation dynamics across the different types of change, with a more pronounced impact in meadows. In severely degraded steppe and meadow regions, grazing intensity emerged as the predominant driver of NDVI change, with an importance value exceeding 0.50. Notably, as degradation progressed from slight to severe, the significance of this factor correspondingly increased. Our findings can provide effective information for guiding the implementation of ecological restoration projects and the sustainable management of alpine arid ecosystems.
The rational allocation of land resources is crucial to ensuring human well-being, livelihood, and survival. The study of Production-Living-Ecological Space (PLES) provides new perspectives on land resource allocation. However, few studies have assessed the feasibility of PLES optimization in ecological transition zones. For this study, using the composite functional space classification method, a classification and functional utility scoring system were constructed. Various methods, including dynamic attitude, transfer matrix, and spatial autocorrelation, were employed to characterize the evolution of the quantity and quality of PLES in the Hexi Corridor. Moreover, the mechanisms driving these changes were explored using a geodetector. Our findings revealed that: (1) The distribution of Production-Ecological Space (PES) is higher in the west and south and lower in the east and north. Production-Living Space (PLS) is scattered. Ecological-Production Space (EPS) is mostly distributed in the south or west, whereas Ecological Space (ES) is mainly located in the north and west of the Hexi Corridor. (2) From 1980 to 2020, the area of PES and PLS increased by 2037.84 km2 and 673 km2, respectively; the area of EPS was relatively stable, and the area of ES decreased by 2523.06 km2. (3) The evolution of PLES quality indicated that the high functional utility area of PES and PLS was roughly the same as the expanded functional utility area, whereas the expanded functional utility area of EPS and ES is similar to the median functional utility area. (4) The spatiotemporal evolution of PLES is closely linked to natural, economic, and social factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.