Introduction. A significant proportion of the fuel pump’s faults is associated with an electric motor (about 40%), the technical condition of which is determined by the value of the electrical resistance of the winding circuit. However, direct measurement of electrical resistance without removing the vehicle is difficult. Therefore, it is possible to diagnose the performance of the electric motor (and the pump as a whole) by the amount of consumed current.Materials and methods. The author used physical modeling of faults by adjustable resistance for acceleration of the experiment and establishment of precise limits in the efficiency of the electric motor. The criterion for the operability of an electric fuel pump was the value of the developed pressure of at least 0.25 MPa.Results. An increase in the series-connected resistance led to a decrease in the current consumption of the pump, as well as a decrease in its performance. When the critical resistance value reached 11.2 ohms, the pump stopped working. A decrease in the resistance connected in parallel also led to a decrease in the current consumed by the pump since a significant part of it is bypassing of the electric motor through resistance. When the critical resistance value of 0.2 Ohm was reached, the pump stopped working.Discussion and conclusions. As a result, the author develops the mathematical model of the electric motor’s efficiency, which allows determining its technical condition by the usage both the value of electrical resistance and the consumed current. Moreover, measuring the current consumed by an electric motor serves as the basis for diagnosing electric fuel pumps directly on a vehicle and reduces the labor intensity and downtime of vehicles under repair.