Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Ozone at ground level (O3) is an air pollutant that is formed from primary precursor gases like nitrogen oxides (NOx) and volatile organic compounds (VOCs). It plays a significant role as a precursor to highly reactive hydroxyl (OH) radicals, which ultimately influence the lifespan of various gases in the atmosphere. The elevated surface O3 levels resulting from anthropogenic activities have detrimental effects on both human health and agricultural productivity. This paper provides a comprehensive analysis of the variations in surface O3 levels across various regions in the Indian subcontinent, focusing on both spatial and temporal changes. The study is based on an in-depth review of literature spanning the last thirty years in India. Based on the findings of the latest study, the spatial distribution of surface O3 indicates a rise of approximately 50–70 ppbv during the summer and pre-monsoon periods in the northern region and Indo-Gangetic Plain. Moreover, elevated levels of surface O3 (40–70 ppbv) are observed during the pre-monsoon/summer season in the western, southern, and peninsular Indian regions. The investigation also underscores the ground-based observations of diurnal and seasonal alterations in surface O3 levels at two separate sites (rural and urban) in Kannur district, located in southern India, over a duration of nine years starting from January 2016. The O3 concentration exhibits an increasing trend of 7.91% (rural site) and 5.41% (urban site), ascribed to the rise in vehicular and industrial operations. This review also presents a succinct summary of O3 fluctuations during solar eclipses and nocturnal firework displays in the subcontinent.
Ozone at ground level (O3) is an air pollutant that is formed from primary precursor gases like nitrogen oxides (NOx) and volatile organic compounds (VOCs). It plays a significant role as a precursor to highly reactive hydroxyl (OH) radicals, which ultimately influence the lifespan of various gases in the atmosphere. The elevated surface O3 levels resulting from anthropogenic activities have detrimental effects on both human health and agricultural productivity. This paper provides a comprehensive analysis of the variations in surface O3 levels across various regions in the Indian subcontinent, focusing on both spatial and temporal changes. The study is based on an in-depth review of literature spanning the last thirty years in India. Based on the findings of the latest study, the spatial distribution of surface O3 indicates a rise of approximately 50–70 ppbv during the summer and pre-monsoon periods in the northern region and Indo-Gangetic Plain. Moreover, elevated levels of surface O3 (40–70 ppbv) are observed during the pre-monsoon/summer season in the western, southern, and peninsular Indian regions. The investigation also underscores the ground-based observations of diurnal and seasonal alterations in surface O3 levels at two separate sites (rural and urban) in Kannur district, located in southern India, over a duration of nine years starting from January 2016. The O3 concentration exhibits an increasing trend of 7.91% (rural site) and 5.41% (urban site), ascribed to the rise in vehicular and industrial operations. This review also presents a succinct summary of O3 fluctuations during solar eclipses and nocturnal firework displays in the subcontinent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.