To achieve the efficient utilization of low-concentration mine gas, reduce resource waste and alleviate environmental pollution, the high-temperature oxidation of low-concentration gas at a concentration range of 1.00% to 1.50%, which is directly discharged into the atmosphere during coal mine production, was carried out to recover heat for reuse. The gas oxidation equipment was improved for the heating process and the safety of low-concentration gas oxidation under a high-temperature environment was evaluated. The experimental results showed that the reactor could provide a 1000 °C high-temperature oxidation environment for gas oxidation after installing high-temperature resistant ceramics. The pressure variation curves of the reactor with air and different concentrations of gas were similar. Due to the thermal expansion, the air pressure slightly increased and then returned to normal pressure. In contrast, the low-concentration gas exhibited a stable pressure response in the high-temperature environment of 1000 °C. The outlet pressure was significantly greater than the inlet pressure, and the pressure difference between the inlet and outlet exhibited a trend to increase with the gas concentration. The minimum pressure difference was 4 kPa (air) and the maximum was 11 kPa (1.50% gas). The explosion limit varied with the temperature and the blend of oxidation products. The ratio of measured gas pressure to air pressure after oxidation was below the explosion criterion, indicating that the measured concentration of gas is still safe after the shift of the explosion limit, which provides a safe concentration range for the efficient use of low-concentration gas in the future.