The genus Trifolium comprises of 290 annual and perennial species of which the species such as T. repens, T. hybridum, T. pratense, T. ambiguum, T. resupinatum, T. alexandrinum are economically important. Boundaries between species in many cases have been difficult to define because of wide range of diversity caused by primary polymorphism. Hence, inter-and intraspecies variation in Trifolium, for zymogram pattern of five enzyme system was made to work out estimate of variability for isozymic banding pattern and get an insight into the species relationship. A total of 25 species represented by 134 accessions were compared for 5 enzymes viz. peroxidase, esterase, superoxide dismutase, acid phosphatase, and glutamate oxalo acetate transaminase using starch gel electrophoresis. Forty-six types of zymograms for Est isozyme pattern were observed amounting to 4.38 estimate of variability. The estimates of variability revealed maximum variation in T. resupinatum (4.24) followed with 3.02 in T. nigrescens. Estimate of variability for superoxide dismutase ranged from 0.46 to 2.67 among species amounting to 1.08 total variability across species. A total of 28 types of glutamate oxalo acetate transaminase zymograms were observed accounting for 2.48 estimate of variability. All but one band attributed to an estimate of variability of 1.43 in the genus for ACP and 16 different types of ACP zymograms were noticed. Highest variation for ACP was observed in T. resupinatum (4.53). Estimate of variation for peroxidase was 4.83 and 51 types of zymogram were observed. The species differed markedly for zymograms. The species distributed both in temperate and tropical parts like T. resupinatum had more variability as compared to cultivated species like T. alexandrinum and T. pratense. The rich variability present among these species can provide good source of gene transfer from wild to cultivated species which otherwise have no specific zymogram and exhibit low variability. The species sharing zymogram pattern for one or more enzymes with cultivated species were considered to have affinity and can further be utilized in attempting interspecific hybridization.