The cross-species bacterial communication signal autoinducer 2 (AI-2), produced by the purified enzymes Pfs (nucleosidase) and LuxS (terminal synthase) from S-adenosylhomocysteine, directly increased Escherichia coli biofilm mass 30-fold. Continuous-flow cells coupled with confocal microscopy corroborated these results by showing the addition of AI-2 significantly increased both biofilm mass and thickness and reduced the interstitial space between microcolonies. As expected, the addition of AI-2 to cells which lack the ability to transport AI-2 (lsr null mutant) failed to stimulate biofilm formation. Since the addition of AI-2 increased cell motility through enhanced transcription of five motility genes, we propose that AI-2 stimulates biofilm formation and alters its architecture by stimulating flagellar motion and motility. It was also found that the uncharacterized protein B3022 regulates this AI-2-mediated motility and biofilm phenotype through the two-component motility regulatory system QseBC. Deletion of b3022 abolished motility, which was restored by expressing b3022 in trans. Deletion of b3022 also decreased biofilm formation significantly, relative to the wild-type strain in three media (46 to 74%) in 96-well plates, as well as decreased biomass (8-fold) and substratum coverage (19-fold) in continuous-flow cells with minimal medium (growth rate not altered and biofilm restored by expressing b3022 in trans). Deleting b3022 changed the wild-type biofilm architecture from a thick (54-m) complex structure to one that contained only a few microcolonies. B3022 positively regulates expression of qseBC, flhD, fliA, and motA, since deleting b3022 decreased their transcription by 61-, 25-, 2.4-, and 18-fold, respectively. Transcriptome analysis also revealed that B3022 induces crl (26-fold) and flhCD (8-to 27-fold). Adding AI-2 (6.4 M) increased biofilm formation of wild-type K-12 MG1655 but not that of the isogenic b3022, qseBC, fliA, and motA mutants. Adding AI-2 also increased motA transcription for the wild-type strain but did not stimulate motA transcription for the b3022 and qseB mutants. Together, these results indicate AI-2 induces biofilm formation in E. coli through B3022, which then regulates QseBC and motility; hence, b3022 has been renamed the motility quorum-sensing regulator gene (the mqsR gene).There is an explosive amount of research on biofilms with the ultimate aim of their control (24); however, little is known about the regulation of this complex process of cell attachment leading to exquisite architecture (11). Since 65% of human bacterial infections involve biofilms (31), understanding the genetic basis of biofilm formation to find effective ways to prevent biofilms is important for combating disease and for engineering applications. To this end, we have studied the whole bacterial genome with DNA microarrays by two complementary approaches: studying biofilm gene expression relative to planktonic cells (34, 35) and studying plant-derived biofilm inhibitors that do not alter the bacterial g...