Multi-Global Navigation Satellite Systems (multi-GNSS) (including GPS, BDS, Galileo, and GLONASS) provide a significant opportunity for high-quality zenith tropospheric delay estimation and its applications in meteorology. However, the performance of zenith total delay (ZTD) retrieval from single- or multi-GNSS observations is not clear, particularly from the new, fully operating BDS-3. In this paper, zenith tropospheric delay is estimated using the single-, dual-, triple-, or four-GNSS Precise Point Positioning (PPP) technique from 55 Multi-GNSS Experiment (MGEX) stations over one year. The performance of GNSS ZTD estimation is evaluated using the International GNSS Service (IGS) standard tropospheric products, radiosonde, and the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5). The results show that the GPS-derived ZTD time series is more consistent and reliable than those derived from BDS-only, Galileo-only, and GLONASS-only solutions. The performance of the single-GNSS ZTD solution can be enhanced with better accuracy and stability by combining multi-GNSS observations. The accuracy of the ZTD from multi-GNSS observations is improved by 13.8%, 43.8%, 27.6%, and 22.9% with respect to IGS products for the single-system solution (GPS, BDS, Galileo, and GLONASS), respectively. The ZTD from multi-GNSS observations presents higher accuracy and a significant improvement with respect to radiosonde and ERA5 data when compared to the single-system solution.