Natural colloids have a potential role in facilitating the transport of radionuclides in groundwater. To assess the role of mobile colloidal phases in radionuclide transport, characterization of colloids for size, size distribution, zeta potential, surface charge and elemental composition is required. Groundwater samples were collected from 12 borewells in the study area and were characterized with respect to physicochemical parameters. Water quality parameters such as pH, temperature, specific conductance, TDS and dissolved O 2 were measured in situ. Based on salinity, two groundwater types were identified in the study area: (1) freshwater type and (2) brackish type. Laboratory and field-scale turbidity measurements in addition to quantitative analysis of major ions were carried out. It was observed that the colloid concentrations are reduced at higher salinity. Zetasizer, particle size analyzer, scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction techniques were used to characterize the colloidal particles in groundwater. Colloids were present in all the groundwater samples, the concentration varying between 0.05 and 6 mg/L. Colloid concentration was greater in wells with low ionic strength and the number of colloidal particles varied between 3 9 10 9 and 4 9 10 11 particles/L. The average colloid size varied between 200 and 350 nm for various samples. The zeta potential of the colloidal particles varied between -25.5 and -34.0 mV. SEM analysis of colloidal particles revealed the presence of clays particularly kaolinite and that the mineral composition of colloids reflects the mineralogy of the aquifer. For proper risk assessment and remediation studies, the role of colloids in radionuclide transport assumes greater importance. This study highlights the need for, and relevance of, detailed colloid characterization to assess its role in the migration of radionuclides from near surface disposal facilities.