Forest dendromass is still the major raw material in the production of solid biofuels, which are still the most important feedstock in the structure of primary energy production from renewable energy sources. Because of the high species and type diversity of production residues generated at wood processing sites, as well as at logging sites, the quality of commercial solid biomass produced there has to be evaluated. The aim of this study was to assess the thermophysical characteristics and the elemental composition of ten types of commercial solid biofuels (pinewood sawdust; energy chips I, II, and III; veneer sheets; shavings; birch bark; pine bark; pulp chips; and veneer chips), depending on their acquisition time (August, October, December, February, April, and June). Pulp chips had the significantly lowest moisture content (mean 26.92%), ash content (mean 0.39% DM—dry matter), nitrogen (N) content (mean 0.11% DM), and sulfur (S) content (mean 0.011% DM) and the highest carbon (C) content (mean 56.09% DM), hydrogen (H) content (6.40% DM), and lower heating value (LHV) (mean 13.61 GJ Mg−1). The three types of energy chips (I, II, and III) had good energy parameters, especially regarding their satisfactory LHV and ash, S, and N content. On the other hand, pine and birch bark had the worst ash, S, and N contents, although they had beneficial higher heating values (HHVs) and C contents. Solid biofuels acquired in summer (June) had the lowest levels of moisture and ash and the highest LHV. The highest moisture content and the lowest LHV were found in winter (December).