Hydraulic fracture morphology and propagation mode are difficult to predict in layers of the various lithological strata, which seriously affects exploitation efficiency. This paper studies the fundamental mechanical and microscopic properties of the two main interfaces in inter-salt shale reservoirs. On this basis, cement-salt combination samples with composite interfaces are prepared, and hydraulic fracturing tests are carried out under different fluid velocities, viscosity, and stress conditions. The result shows that the shale bedding and salt-shale interface are the main geological interfaces of the inter-salt shale reservoir. The former is filled with salt, and the average tensile strength is 0.42 MPa, c = 1.473 MPa, and φ = 19.00°. The latter is well cemented, and the interface strength is greater than that of shale bedding, with c = 2.373MPa and φ = 26.15°. There are three basic fracture modes for the samples with compound interfaces. Low-viscosity fracturing fluid and high-viscosity fracturing fluid tend to open the internal bedding interface and produce a single longitudinal crack, respectively, so properly selecting the viscosity and displacement is necessary. Excessive geostress differences will aggravate the strain incompatibility of the interface between different rock properties, which makes the interfaces open easily. The pump pressure curves' morphological characters are different with different failure modes.