Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Soil erosion risk assessment enables the identification of areas requiring priority treatment and avoids wasting human and material resources. The factor scoring method used in existing studies has high subjectivity, and the method of expressing erosion risk according to the soil erosion intensity ignores the random nature of the occurrence of erosion; therefore, neither method accurately reflects the risk of soil erosion. In order to address this issue, this study proposes a soil erosion risk assessment method that integrates the outcome and the probability of occurrence of soil erosion by means of a probabilistic statistical model. Subsequently, experimental research is conducted in the Dali River Basin. On the basis of long time-series data, using mathematical statistics as a tool and drawing on the empirical frequency formula, the probabilistic statistical risk assessment model is combined with the Modified Universal Soil Loss Equation (RUSLE) model to account for the probability of regional soil erosion at different intensity levels in the long time-series, which is combined with the intensity of erosion to carry out soil erosion risk assessment. The results of our study show the following: (1) The central and southwestern regions of the Dali River Basin (DRB) present medium and high levels of soil erosion risk, with the proportion of low-risk areas increasing annually, accounting for 78.97% of the DRB in 2020, while extremely high-risk areas account for only 0.40% of the DRB. (2) The major components impacting soil erosion risk in the DRB, as revealed by the geodetector, are the normalized difference vegetation index (NDVI) and slope, where the interaction between the two dominated the spatial variation in soil erosion risk. (3) Comparing the soil erosion risk and its status in the coming years, the proposed assessment method based on the occurrence probability can reveal the future soil erosion risk better than the traditional assessment method.
Soil erosion risk assessment enables the identification of areas requiring priority treatment and avoids wasting human and material resources. The factor scoring method used in existing studies has high subjectivity, and the method of expressing erosion risk according to the soil erosion intensity ignores the random nature of the occurrence of erosion; therefore, neither method accurately reflects the risk of soil erosion. In order to address this issue, this study proposes a soil erosion risk assessment method that integrates the outcome and the probability of occurrence of soil erosion by means of a probabilistic statistical model. Subsequently, experimental research is conducted in the Dali River Basin. On the basis of long time-series data, using mathematical statistics as a tool and drawing on the empirical frequency formula, the probabilistic statistical risk assessment model is combined with the Modified Universal Soil Loss Equation (RUSLE) model to account for the probability of regional soil erosion at different intensity levels in the long time-series, which is combined with the intensity of erosion to carry out soil erosion risk assessment. The results of our study show the following: (1) The central and southwestern regions of the Dali River Basin (DRB) present medium and high levels of soil erosion risk, with the proportion of low-risk areas increasing annually, accounting for 78.97% of the DRB in 2020, while extremely high-risk areas account for only 0.40% of the DRB. (2) The major components impacting soil erosion risk in the DRB, as revealed by the geodetector, are the normalized difference vegetation index (NDVI) and slope, where the interaction between the two dominated the spatial variation in soil erosion risk. (3) Comparing the soil erosion risk and its status in the coming years, the proposed assessment method based on the occurrence probability can reveal the future soil erosion risk better than the traditional assessment method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.