Potato early blight caused by Alternaria solani generates significant economic losses in crops worldwide. Forecasting the risk of infection on crops is indispensable for the management of the fungal disease, ensuring maximum economic benefit but with minimal environmental impact. This work aimed to calculate the interrupted wet periods (IWP) according to the climate conditions of A Limia (Northwest of Spain) to optimize the prediction against early blight in potatoes. The study was performed during nine crop cycles. The relative hourly humidity and Alternaria concentration in the crop environment were taken into account. Alternaria levels were monitored by aerobiological techniques using a LANZONI VPPS-2000 volumetric trap. The relationships between weather conditions and airborne Alternaria concentration were statistically analyzed using Spearman correlations. To establish the effectiveness of wetness periods, the first important Alternaria peak was taken into account in each crop cycle (with a concentration greater than 70 spores/m 3 ). Considering the six interrupted wet periods of the system, it was possible to predict the first peak of Alternaria several days in advance (between 6 and 38 days), except in 2007 and 2018. Automated systems to predict the initiation of early blight in potato crop, such as interrupted wet periods, could be an effective basis for developing decision support systems. The incorporation of aerobiological data for the calculation of interrupted wet periods improved the results of this system.