Carefully chosen complex variable formulations can solve flow in fractured porous media. Such a calculus approach is attractive, because the gridless method allows for fast, high-resolution model results. Previously developed complex potentials to describe flow in porous media with discrete heterogeneities such as natural fractures can be modified to expand the accuracy of the solution range. The prior solution became increasingly inaccurate for flows with fractures oriented at larger angles with respect to the far-field flow. The modified solution, presented here, based on complex analysis methods (CAM), removes the limitation of the earlier solution. Benefits of the CAM model are (1) infinite resolution, and (2) speed of use, as no gridding is required. Being gridless and meshless, the CAM model is computationally faster than integration methods based on solutions across discrete volumes. However, branch cut effects may occur in impractical locations due to mathematical singularities. This paper demonstrates how the augmented formulation corrects physically unfeasible refraction of streamlines across high-permeability bands (natural fractures) oriented at high angles with respect to a far-field flow. The current solution is an important repair. An application shows how a drained rock volume in hydraulically fractured hydrocarbon wells will be affected by the presence of natural fractures.