Water is one of the most precious resources and is essential to agricultural output; the biggest user of water is the agricultural sector. Several societal sectors are impacted by the problem of climate change, including agriculture, water resources, and irrigation water demand. A key element in determining sustainable crop production potential is choosing the right cultivars at the right time of year to plant. The dates on which maize is sown are greatly impacted by high summer temperatures and low spring temperatures. Water stress and the timing of sowing can have a significant impact on maize crop yield and water use efficiency. As a result, figuring out the ideal irrigation volume and sowing dates depending on local conditions is essential. A split plot layout was used to create a randomized complete block design for an experiment with five sowing dates (A, B, C, D, and E) and six hybrids (KWS3376, Xinyu 65, KWS9384, Huamei No. 1, Xinyu 102, and Heyu 187). All sowing dates and hybrids had a significant impact on the yield and yield-contributing features (leaf length, ear diameter, grain number per spike, grain breadth, hundred-grain weight, etc.) of maize crops according to the data analysis. A higher grain yield with yield features, such as ear length, number of grains per ear, and hundred-grain weight, was obtained with early-season sowing. Delayed seeding resulted in a lower crop yield. The seasonally delayed seeding of maize reduces yield and yield characteristics. Xinyu 65 produced the highest yield and yield component values of any hybrid. For improved yield and yield traits in the examined area, the study recommended planting maize hybrid Xinyu 65 early in the growing season.