The contactless recording of a photoplethysmography (PPG) signal with a Red-Green-Blue (RGB) camera is known as remote photoplethysmography (rPPG). Studies have reported on the positive impact of using this technique, particularly in heart rate estimation, which has led to increased research on this topic among scientists. Therefore, converting from RGB signals to constructing an rPPG signal is an important step. Eight rPPG methods (plant-orthogonal-to-skin (POS), local group invariance (LGI), the chrominance-based method (CHROM), orthogonal matrix image transformation (OMIT), GREEN, independent component analysis (ICA), principal component analysis (PCA), and blood volume pulse (PBV) methods) were assessed using dynamic time warping, power spectrum analysis, and Pearson’s correlation coefficient, with different activities (at rest, during exercising in the gym, during talking, and while head rotating) and four regions of interest (ROI) : the forehead, the left cheek, the right cheek, and a combination of all three ROIs. The best performing rPPG methods in all categories were the POS, LGI, and OMI methods; each performed well in all activities. Recommendations for future work are provided.