This study analyses the distribution of stress during the testing of glued cylindrical specimens with thermally sprayed MgAl2O4, Al2O3 oxide coatings in order to evaluate the tensile adhesion strength. The set of studies that make up this work were conducted in order to evaluate the influence of the geometric parameters of cylindrical test specimens, 25 mm in diameter by 16–38.1 mm in height, on the measured tensile adhesion strength of the specimens. The stress and strain states inside the coating and at the coating-substrate interface were determined using the finite element modelling method. The debonding mechanisms, failure mode and influence of the coating microstructure on bond strength are also discussed. The finite element stress analysis shows a significant level of non-uniform stress distribution in the test specimens. The analysis of the results of the modelling stresses and strains using the finite element method for six types of cylindrical specimens, as well as the values obtained for the adhesion testing of MgAl2O4, Al2O3 coatings, show a need to increase the height of the standard cylindrical specimen (according to ASTM C633-13 (2021), GOST 9.304-87). The height should be increased by no less than 1.5–2.0 times to reduce the level of a non-uniform stress distribution in the separation area.