Scale-resolving simulations, such as large eddy simulations, have become affordable tools to investigate the flow in turbomachinery components. The resulting time-resolved flow field is typically analyzed using first- and second-order statistical moments. However, two sources of uncertainty are present when recording statistical moments from scale-resolving simulations: the influence of initial transients and statistical errors due to the finite number of samples. In this paper, both are systematically analyzed for several quantities of engineering interest using time series from a long-time large eddy simulation of the low-pressure turbine cascade T106C. A set of statistical tools to either remove or quantify these sources of uncertainty is assessed. First, the Marginal Standard Error Rule is used to detect the end of the initial transient. The method is validated for integral and local quantities and guidelines on how to handle spatially varying initial transients are formulated. With the initial transient reliably removed, the statistical error is estimated based on standard error relations considering correlations in the time series. The resulting confidence intervals are carefully verified for quantities of engineering interest utilizing cumulative and simple moving averages. Furthermore, the influence of periodic content from large scale vortex shedding on the error estimation is studied. Based on the confidence intervals, the required averaging interval to reduce the statistical uncertainty to a specific level is indicated for each considered quantity.