2019
DOI: 10.1016/j.jhydrol.2019.05.021
|View full text |Cite
|
Sign up to set email alerts
|

Assessment of terrestrial water balance using remote sensing data in South America

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
80
0
9

Year Published

2019
2019
2022
2022

Publication Types

Select...
6
2

Relationship

2
6

Authors

Journals

citations
Cited by 78 publications
(90 citation statements)
references
References 81 publications
1
80
0
9
Order By: Relevance
“…Closure experiments have been attempted, and are starting to produce convincing results based on satellite data [49][50][51], although closure has not yet been attained using satellite data alone. Rodell et al [52] show that, in the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than a 10% residual, while observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, i.e., often ≥20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans.…”
Section: Observationsmentioning
confidence: 99%
“…Closure experiments have been attempted, and are starting to produce convincing results based on satellite data [49][50][51], although closure has not yet been attained using satellite data alone. Rodell et al [52] show that, in the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than a 10% residual, while observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, i.e., often ≥20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans.…”
Section: Observationsmentioning
confidence: 99%
“…A intensa ciclagem de precipitação e o fornecimento de umidade para a atmosfera contribuem para a manutenção do regime hidrológico, não somente para a bacia Amazônica, mas também para outras regiões do continente sul-americano (Phillips et al, 2008;Malhi et al, 2008;Satyamurty et al, 2013). Na média, a bacia Amazônica comporta-se como sumidouro de umidade (precipitação maior que evapotranspiração), recebendo vapor de água tanto da floresta tropical, por meio da reciclagem de precipitação (Trenberth 1999;Nascimento et al, 2016), quanto por meio do transporte de umidade proveniente do Oceano Atlântico tropical (Rocha et al, 2015). No contexto da circulação regional, a floresta Amazônica é uma importante fonte de umidade para as regiões central-sul do Brasil e bacia do Prata, desempenhando papel fundamental no regime de precipitação em regiões remotas da bacia (Nascimento et al, 2016;Rocha et al, 2017).…”
Section: Introductionunclassified
“…Desde o fim da década de 1970, vários estudos de balanço de água têm sido realizados na região utilizandose uma variedade de técnicas, dados observados e de reanálises (Molion 1975;Salati, 1979;Salati e Marques 1984;Rao et al, 1996;von Randow et al, 2004;Marengo 2005;Nascimento et al, 2016;Rocha et al, 2017). da utilizaram dados observados em torres micrometeorológicas durante o Experimento de Grande Escala da Biosfera Atmosfera na Amazônia -LBA (Avissar e Nobre, 2002) a fim de entender a variação da umidade e precipitação em áreas de floresta e pastagem.…”
Section: Introductionunclassified
See 1 more Smart Citation
“…Currently, several models to estimate ET using remote sensing data are available, from local and regional scales (SEBAL [7], SEBS [8], METRIC [9], ALEXI [10]) to continental and global scales (MOD16 [11], ALEXI/DisALEXI [10], JPL-PT [12], GLEAM [13,14]), over a wide range of temporal scales. According to Biggs et al [4] models can be classified in three different categories: (i) physical models based on vegetation indices and meteorological data, (ii) energy balance models based on land surface temperature and (iii) empirical/statistical models.…”
Section: Introductionmentioning
confidence: 99%