This article presents a review on recent advances in the fatigue behavior of Ti alloys, especially the main commercial compositions for orthopedic applications. In the case of well‐known Ti–6Al–4V alloy, the major concern is related to the effect of the surface modification necessary to improve the osseointegration. The introduction of surface discontinuities due to the growth of a porous oxide layer, or the roughness development, may severely affect the fatigue performance depending on the level of alteration. In the case of additive manufactured Ti–6Al–4V, the fatigue response is also influenced by inherent defects of as‐built parts. Regarding the recently developed metastable β alloys, information about the fatigue properties is still scarce and mainly related to the effect of second phase precipitates, which are introduced to optimize the mechanical properties. The fatigue behavior of the Ti alloys is complex, as is their microstructure, and should not be neglected when the alloys are being developed or improved to be applied in medical devices.