The extreme temperature indices (ETI) are an important indicator of climate change, the detection of their changes over the next years can play an important role in the Climate Action Plan (CAP). In this study, four temperature indices (Mean of daily minimum temperature (TN), Mean of daily maximum temperature (TX), Cold-spell duration index (CSDI), and Warm-spell duration index (WSDI)) were de ned by ETCCDI and two new indices of the Maximum number of consecutive frost days (CFD) and the Maximum number of consecutive summer days (CSU) were calculated to examine ETIs in Iran under climate change conditions. We used minimum and maximum daily temperature of ve General circulation models (GCMs) including HadGEM2-ES, IPSL-CM5A-LR, GFDL-ESM2M, MIROC-ESM-CHEM, and NorESM1-M from the set of CMIP5 Bias-Correction models. We investigated Two Representative Concentration Pathway (RCP) scenarios of RCP4.5 and RCP8.5 -during the historical and future (2021-2060 and 2061-2100) periods. The performance of each model was evaluated using the Taylor diagram on a seasonal scale. Among models, GFDL-ESM2M and HadGEM2-ES models showed the highest, and NorESM1-M and IPSL-CM5A-LR models showed the lowest performance in Iran. Then an ensemble model was generated using Independence Weighted Mean (IWM) method. The results of multimodel ensembles (MME) showed a higher performance compared to individual CMIP5 models in all seasons. Also, the uncertainty value was signi cantly reduced, and the correlation value of the MME model reached 0.95 in all seasons. Additionally, it is found that WSDI and CSU indices showed positive anomalies in future periods and CSDI and CFD showed negative anomalies throughout Iran. Also, at the end of the 21 st century, no cold spells are projected in almost every part of Iran. The CSU index showed that Iran's summer days are increasing sharply, according to the results of the RCP8.5 scenario in spring (MAM) and autumn (SON), the CSU will increase by 18.79 and 20.51 days, respectively at the end of the 21 st century. It is projected that in the future, the spring and autumn seasons will be shorter and, summers, will be much longer than before.