Recent studies have indicated a key role of the impaired suppressive capacity of regulatory T cells (Tregs) in psoriasis (PsO) pathogenesis. However, the genetic background of Treg dysfunctions remains unknown. The aim of this study was to evaluate the association of PsO development with selected single nucleotide polymorphisms (SNPs) of genes in which protein products play a significant role in the regulation of differentiation and function of Tregs. There were three study groups in our research and each consisted of different unrelated patients and controls: 192 PsO patients and 5605 healthy volunteers in the microarray genotyping group, 150 PsO patients and 173 controls in the ARMS–PCR method group, and 6 PsO patients and 6 healthy volunteers in the expression analysis group. The DNA microarrays analysis (283 SNPs of 57 genes) and ARMS–PCR method (8 SNPs in 7 genes) were used to determine the frequency of occurrence of SNPs in selected genes. The mRNA expression of selected genes was determined in skin samples. There were statistically significant differences in the allele frequencies of four SNPs in three genes (TNF, IL12RB2, and IL12B) between early-onset PsO patients and controls. The lowest p-value was observed for rs3093662 (TNF), and the G allele carriers had a 2.73 times higher risk of developing early-onset PsO. Moreover, the study revealed significant differences in the frequency of SNPs and their influence on PsO development between early- and late-onset PsO. Based on the ARMS–PCR method, the association between some polymorphisms of four genes (IL4, IL10, TGFB1, and STAT3) and the risk of developing PsO was noticed. Psoriatic lesions were characterized with a lower mRNA expression of FOXP3, CTLA4, and IL2, and a higher expression of TNF and IL1A in comparison with unaffected skin. In conclusion, the genetic background associated with properly functioning Tregs seems to play a significant role in PsO pathogenesis and could have diagnostic value.