In light of the long-term pressure and short-term impact of economic and technological globalization, regional and urban resilience has become an important issue in research. As a new organizational form of regional urban systems, the resilience of urban networks generated by flow space has emerged as a popular subject of research. By gathering 2017 data from the Baidu search index, the Tencent location service, and social statistics, this study constructs information, transportation, and economic networks among 344 cities in China to analyze the spatial patterns of urban networks and explore their structural characteristics from the perspectives of hierarchy and assortativity. Transmissibility and diversity were used to represent the resilience of the network structure in interruption scenarios (node failure and maximum load attack). The results show the following: The information, transportation, and economic networks of cities at the prefecture level and higher in China exhibit a dense pattern of spatial distribution in the east and a sparse pattern in the west; however, there are significant differences in terms of hierarchy and assortativity. The order of resilience of network transmissibility and diversity from strong to weak was information, economic, transportation. Transmissibility and diversity had nearly identical scores in response to the interruption of urban nodes. Moreover, a highly heterogeneous network was more likely to cause shocks to the network structure, owing to its cross-regional urban links in case of disturbance. We identified 12 dominant nodes and 93 vulnerable nodes that can help accurately determine the impetus behind network structure resilience. The capacity of regions for resistance and recovery can be improved by strengthening the construction of emergency systems and risk prevention mechanisms.