The aim of this article is to review the application of the finite element method (FEM) to cross-wedge rolling (CWR) modeling. CWR is a manufacturing process which is used to produce stepped axles and shafts as well as forged parts for further processing on forging presses. Although the concept of CWR was developed 140 years ago, it was not used in industry until after World War 2. This was due to the limitations connected with wedge tool design and the high costs of their construction. As a result, until the end of the twentieth century, CWR tools were constructed by rolling mill manufacturers as they employed engineers with the most considerable experience in CWR process design. The situation has only changed recently when FEM became widely used in CWR analysis. A vast number of theoretical studies have been carried out in recent years, and their findings are described in this overview article. This paper describes nine research areas in which FEM is effectively applied, namely: the states of stress and strain; force parameters; failure modes in CWR; material fracture; microstructure modeling; the formation of concavities on the workpiece ends; CWR formation of hollow parts; CWR formation of parts made of non-ferrous materials; and new CWR methods. Finally, to show the potential of FEM on CWR modeling, a CWR process for manufacturing a stepped shaft used in car gearboxes is simulated numerically. This numerical simulation example shows that FEM can be used to model very complex cases of CWR, which should lead to a growing interest in this advanced manufacturing technique in the future.