Actual use studies play a key part in evaluating the reduced risk potential of tobacco and nicotine products. This study was undertaken to determine the puffing topography, mouth level exposure (MLE) and average daily consumption (ADC) relating to two commercially available tobacco heating products (THPs) and a prototype electronic cigarette (or e-cigarette) among Italian non-mentholated 7 mg ISO tar cigarette smokers. The study was conducted in Milan, Italy, with three groups of approximately 50 participants. Groups 1 and 3 included adult smokers of 7 mg ISO tar tobacco cigarettes, and Group 2 consisted of both solus vapers and dual users of vapour and tobacco products. Amongst smokers, e-cigarette mean puff volumes (41.6 mL vs 41.3 mL) and mean puff durations (1.4 s vs 1.5 s) were similar to that of the cigarette, although the average usage session was significantly longer (1064.8 s vs 289.5 s) with a higher total number of puffs (58.6 vs 17.3), however this may be attributable to differences in product operation. There were no significant differences across puffing topography measurements observed between smokers (Group 1) and regular vapers/dual users (Group 2) when using the e-cigarette. As consistent with previous research, users took, on average, larger mean puff volumes when using a THP compared to the reference cigarette (C651), although puff numbers and puff durations remained similar. The average interval between puffs was considerably shorter for THP1.0(T) compared to THS2.4(T) (11.0 s vs 17.1 s). MLE to nicotine-free dry particulate matter and nicotine was significantly reduced for THP1.0(T) and THS2.4(T) compared to the tobacco cigarette (C651). MLE to nicotine was also significantly reduced for the e-cigarette (IS1.0(T)) compared to C651. The average daily consumption (ADC) of cigarettes by groups 1 and 3 were higher than the respective ADCs of both THP consumables. There were no significant differences in ADC when comparing the same product between different groups. Differences seen between sensory scores for each of the product categories may be attributed to fundamental differences in design and mode of operation resulting in very different characteristics of the aerosol generated. With an estimated 1.1 billion smokers worldwide as of 2016 1 , the use of combustible tobacco products has been identified as one of the leading preventable causes of human disease 2. Most of these smoking-related diseases-such as cardiovascular disease, respiratory disorders and lung cancer-are attributed to the inhalation of toxicants within tobacco smoke 3 , released when the tobacco is combusted 4,5. As these toxicants are often the product of combustion and pyrolysis, recent advances have focused on heating (at temperatures below 350 °C 6) rather than burning tobacco, or removing tobacco exposure altogether in the form of electronic cigarettes (also known as e-cigarettes, or Electronic Nicotine Delivery Systems (ENDS)). Based on current available evidence, Public Health England 7 have supported the statement that...