Optimizing the performance of a perforated completion requires reliably estimating two groups of parameters: (a) perforation tunnel geometry, particularly depth of penetration (DoP); (b) the condition of perforation tunnels (fill and crushed zone damage). A recent industry survey showed that existing DoP algorithms, which were all based on conversion of surface concrete results to downhole stressed rock penetrations, have shortcomings. Most of the surveyed perforating design tools substantially overestimate stressed rock DoP. In addition, a vast and growing amount of laboratory and field data is revealing that the post-perforation tunnel damage primarily depends on dynamic rather than static underbalance condition. Yet the industry still lacks a reliable and practical algorithm to estimate post-perforation tunnel damage for dynamic underbalance (DUB) perforating. Furthermore, existing perforating design tools usually do not handle multi-zone completions or variations of formation properties along the wellbore. This paper describes a perforating job design process and software tool that seamlessly integrates a newly developed DoP model, a simple but robust algorithm to calculate post-perforation tunnel damage for dynamic underbalanced perforating, and a reliable model to reflect 3D fluid flow around the perforations. The new DoP model was constructed exclusively based on rigorous laboratory tests for each individual charge in different rocks under downhole conditions, rather than converted from surface concrete results. The transient pressure properties from a comprehensive wellbore dynamics simulator can be loaded into the planning tool for perforation tunnel damage estimation. The perforation skin algorithm due to DUB was developed through a combination of extensive flow tests, conducted in state-of-the-art facilities, and 3D numerical simulations. The integrated perforating design tool provides zonal productivity estimations for single or multi-zone settings. It also introduces an option to compute perforating parameters (penetration and perforation skin) along the borehole with variable formation properties obtained from well log data. The streamlined design workflow and integrated environment allows users to optimize perforating jobs with minimum efforts. The paper includes two field examples that demonstrate the software applications.Nomenclature k -permeability, md; k c -crushed zone permeability, md; k d -wellbore damage zone permeability, md.