This paper describes the effort of designing an unconventional exhaust manifold for a marine gas turbine engine, with an integrated passive ventilation port for cooling the engine housing. The study is part of a larger program to substitute the propulsion gas turbines for the T22R defense frigate and make the proper aerodynamic adaptations. The system in question is unique, in the sense that it uses the exhaust gas momentum to entrain outside air and ventilate the engine enclosure. In achieving this, RANS computation was used to test various concepts and dimensions for the ventilation system. Based on these analyses, the design that provided adequate air circulation with minimum pressure losses was chosen and the parts were integrated in the overall assembly. The experimental campaign performed on the entire aero-package showed good synergies of the ventilation system with the other adaptations and the engine itself. Performance was evaluated with pressure and temperature probes distributed around the aero-package and were found to be within 3.5% of the data predicted by CFD. This brings further studies closer to a technology readiness level vital for insitu testing on board the ship itself.