Assimilation of Geophysics-Derived Spatial Data for Model Calibration in Geologic CO2 Sequestration
Bailian Chen,
Misael M. Morales,
Zhiwei Ma
et al.
Abstract:Summary
Uncertainty in geological models usually leads to large uncertainty in the predictions of risk-related system properties and/or risk metrics (e.g., CO2 plumes and CO2/brine leakage rates) at a geologic CO2 storage site. Different types of data (e.g., point measurements from monitoring wells and spatial data from 4D seismic surveys) can be leveraged or assimilated to reduce the risk predictions. In this work, we develop a novel framework for spatial data assimilation and risk forecasting.… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.