“…This fact lead several researches to propose a variate of parameterizations to adapt these methods for models with non-Gaussian priors, such as models generated with object-based (Deutsch and Journel, 1998) and multiple-point geostatistics (Mariethoz and Caers, 2014). Among these parameterizations, we can cite, for example, truncated plurigaussian simulation (Liu and Oliver, 2005;Agbalaka and Oliver, 2008;Sebacher et al, 2013;Zhao et al, 2008); level-set functions (Moreno et al, 2008;Chang et al, 2010;Moreno and Aanonsen, 2011;Lorentzen et al, 2012;Ping and Zhang, 2014); discrete cosine transform (Jafarpour and McLaughlin, 2008;Zhao et al, 2016;Jung et al, 2017); Wavelet transforms (Jafarpour, 2010); K-singular value decomposition (Sana et al, 2016;Kim et al, 2018); kernel principal component analysis (KPCA) (Sarma et al, 2008;Sarma and Chen, 2009); PCA with thresholds defined to honor the prior cumulative density function (Chen et al, 2014(Chen et al, , 2015Gao et al, 2015;Honorio et al, 2015) and optimization-based PCA (OPCA) (Vo and Durlofsky, 2014;Emerick, 2017). There are also works based on updating probability maps followed by re-sampling steps with geostatistical algorithms (Tavakoli et al, 2014;Chang et al, 2015;Jafarpour and Khodabakhshi, 2011;Le et al, 2015;Sebacher et al, 2015).…”