In light of pressing global health concerns, the significance of indoor air quality in densely populated structures has been emphasized. This research introduces the Mimosa kinetic façade, an innovative design inspired by the adaptive responsiveness of the Mimosa plant to environmental stimuli. Traditional static architectural façades often hinder natural ventilation, leading to diminished air quality with potential health and cognitive repercussions. The Mimosa kinetic façade addresses these challenges by enhancing effective airflow and facilitating the removal of airborne contaminants. This study evaluates the façade’s impact on quality of life and its aesthetic contribution to architectural beauty, utilizing the biomimicry design spiral for a nature-inspired approach. Computational simulations and physical tests were conducted to assess the ventilation capacities of various façade systems, with a particular focus on settings in Bangkok, Thailand. The study revealed that kinetic façades, especially certain patterns, provided superior ventilation compared to static ones. Some patterns prioritized ventilation, while others optimized human comfort during extended stays. Notably, the most effective patterns of the kinetic façade inspired by the Mimosa demonstrated a high air velocity reaching up to 12 m/s, in contrast to the peak of 2.50 m/s in single-sided façades (traditional façades). This highlights the kinetic façade’s potential to rapidly expel airborne particles from indoor spaces, outperforming traditional façades. The findings underscore the potential of specific kinetic façade patterns in enhancing indoor air quality and human comfort, indicating a promising future for kinetic façades in architectural design. This study aims to achieve an optimal balance between indoor air quality and human comfort, although challenges remain in perfecting this equilibrium.