Post-transcriptional RNA editing may regulate transcript expression and diversity in cells, with potential impacts on various aspects of physiology and environmental adaptation. A small number of recent genome-wide studies in Drosophila, mouse, and human have shown that RNA editing can be genetically modulated, highlighting loci that quantitatively impact editing of transcripts. The potential gene expression and physiological consequences of these RNA editing quantitative trait loci (edQTL), however, are almost entirely unknown. Here, we present analyses of RNA editing in a large domestic mammal (Bos taurus), where we use whole genome and high depth RNA sequencing to discover, characterise, and conduct genetic mapping studies of novel transcript edits. Using a discovery population of nine deeply-sequenced cows, we identify 2,001 edit sites in the mammary transcriptome, the majority of which are adenosine to inosine edits (97.4%). Most sites are predicted to reside in double-stranded secondary structures (85.7%), and quantification of the rates of editing in an additional 355 cows reveals editing is negatively correlated with gene expression in the majority of cases. Genetic analyses of RNA editing and gene expression highlights 67 cis-regulated edQTL, of which seven appear to co-segregate with expression QTL effects. Trait association analyses in a separate population of 9,988 lactating cows also shows nine of the cis-edQTL coincide with at least one co-segregating lactation QTL. Together, these results enhance our understanding of RNA editing dynamics in mammals, and suggest mechanistic links by which loci may impact phenotype through RNA-editing mediated processes.