Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Narcolepsy type 1 (NT1) is an uncommon, persistent sleep disorder distinguished by significant daytime sleepiness, episodes of cataplexy, and irregularities in rapid eye movement sleep. The etiology of NT1 is linked to the destruction of hypothalamic neurons responsible for the synthesis of the wake-promoting neuropeptide known as hypothalamic orexin. The pathophysiological mechanisms underlying NT1 remain inadequately elucidated; however, a model that incorporates the interplay of genetic predisposition, environmental influences, immune system factors, and a deficiency in hypocretin (HCRT) provides a framework for elucidating the pathogenesis of NT1. The prevalence of NT1 has been observed to rise following influenza A (H1N1) pdm09 and the administration of the Pandemrix influenza vaccine. The strong association between narcolepsy and the HLA-DQB1*06:02 allele strongly indicates an autoimmune etiology for this condition. Increasing evidence suggests that T cells play a critical role in this autoimmune-mediated HCRT neuronal loss. Studies have identified specific T cell subsets, including CD4+ and CD8+ T cells, that target HCRT neurons, contributing to their destruction. Clarifying the pathogenesis of NT1 driven by autoimmune T cells is crucial for the development of effective therapeutic interventions for this disorder. This review examines the risk factors associated with the pathogenesis of NT1, explores the role of T cells within the immune system in the progression of NT1, and evaluates immune-mediated animal models alongside prospective immunotherapeutic strategies.
Narcolepsy type 1 (NT1) is an uncommon, persistent sleep disorder distinguished by significant daytime sleepiness, episodes of cataplexy, and irregularities in rapid eye movement sleep. The etiology of NT1 is linked to the destruction of hypothalamic neurons responsible for the synthesis of the wake-promoting neuropeptide known as hypothalamic orexin. The pathophysiological mechanisms underlying NT1 remain inadequately elucidated; however, a model that incorporates the interplay of genetic predisposition, environmental influences, immune system factors, and a deficiency in hypocretin (HCRT) provides a framework for elucidating the pathogenesis of NT1. The prevalence of NT1 has been observed to rise following influenza A (H1N1) pdm09 and the administration of the Pandemrix influenza vaccine. The strong association between narcolepsy and the HLA-DQB1*06:02 allele strongly indicates an autoimmune etiology for this condition. Increasing evidence suggests that T cells play a critical role in this autoimmune-mediated HCRT neuronal loss. Studies have identified specific T cell subsets, including CD4+ and CD8+ T cells, that target HCRT neurons, contributing to their destruction. Clarifying the pathogenesis of NT1 driven by autoimmune T cells is crucial for the development of effective therapeutic interventions for this disorder. This review examines the risk factors associated with the pathogenesis of NT1, explores the role of T cells within the immune system in the progression of NT1, and evaluates immune-mediated animal models alongside prospective immunotherapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.