Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The association of antipsychotic medication with abnormal brain morphometry in schizophrenia remains uncertain. This study investigated subcortical morphometric changes 6 months after switching treatment to clozapine in patients with treatment-resistant schizophrenia compared with healthy volunteers, and the relationships between longitudinal volume changes and clinical variables. 1.5T MRI images were acquired at baseline before commencing clozapine and again after 6 months of treatment for 33 patients with treatment resistant schizophrenia and 31 controls, and processed using the longitudinal pipeline of Freesurfer v.5.3.0. Two-way repeated MANCOVA was used to assess group differences in subcortical volumes over time and partial correlations to determine association with clinical variables. Whereas no significant subcortical volume differences were found between patients and controls at baseline(F(8,52)=1.79; p= 0.101), there was a significant interaction between time, group and structure(F(7,143)=52.54, p<0.001). Corrected post-hoc analyses demonstrated that patients had significant enlargement of lateral ventricles (F(1,59)=48.89; p<0.001) and reduction of thalamus (F(1,59)=34.85; p<0.001), caudate (F(1,59)=59.35; p<0.001), putamen (F(1,59)=87.20; p<0.001) and hippocampus (F(1,59)=14.49; p<0.001) volumes. Thalamus and putamen volume reduction was associated with improvement in PANSS (r=0.42; p=0.021, r=0.39; p=0.033), SANS (r=0.36; p=0.049, r=0.40; p=0.027) and GAF (r=-0.39; p=0.038, r=-0.42; p=0.024) scores. Reduced thalamic volume over time was associated with increased serum clozapine level at follow-up (r=-0.44; p=0.010). Patients with treatment-resistant schizophrenia display progressive subcortical volume deficits after switching to clozapine despite experiencing symptomatic improvement. Thalamo-striatal progressive volumetric deficit associated with symptomatic improvement after clozapine exposure may reflect an adaptive response related to improved outcome rather than a harmful process.
The association of antipsychotic medication with abnormal brain morphometry in schizophrenia remains uncertain. This study investigated subcortical morphometric changes 6 months after switching treatment to clozapine in patients with treatment-resistant schizophrenia compared with healthy volunteers, and the relationships between longitudinal volume changes and clinical variables. 1.5T MRI images were acquired at baseline before commencing clozapine and again after 6 months of treatment for 33 patients with treatment resistant schizophrenia and 31 controls, and processed using the longitudinal pipeline of Freesurfer v.5.3.0. Two-way repeated MANCOVA was used to assess group differences in subcortical volumes over time and partial correlations to determine association with clinical variables. Whereas no significant subcortical volume differences were found between patients and controls at baseline(F(8,52)=1.79; p= 0.101), there was a significant interaction between time, group and structure(F(7,143)=52.54, p<0.001). Corrected post-hoc analyses demonstrated that patients had significant enlargement of lateral ventricles (F(1,59)=48.89; p<0.001) and reduction of thalamus (F(1,59)=34.85; p<0.001), caudate (F(1,59)=59.35; p<0.001), putamen (F(1,59)=87.20; p<0.001) and hippocampus (F(1,59)=14.49; p<0.001) volumes. Thalamus and putamen volume reduction was associated with improvement in PANSS (r=0.42; p=0.021, r=0.39; p=0.033), SANS (r=0.36; p=0.049, r=0.40; p=0.027) and GAF (r=-0.39; p=0.038, r=-0.42; p=0.024) scores. Reduced thalamic volume over time was associated with increased serum clozapine level at follow-up (r=-0.44; p=0.010). Patients with treatment-resistant schizophrenia display progressive subcortical volume deficits after switching to clozapine despite experiencing symptomatic improvement. Thalamo-striatal progressive volumetric deficit associated with symptomatic improvement after clozapine exposure may reflect an adaptive response related to improved outcome rather than a harmful process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.