Postreperfusion syndrome in liver transplantationIn liver transplantation (LT), postreperfusion syndrome (PRS) is represented by a series of transient hemodynamic alterations occurring after graft reperfusion into the recipient, including bradycardia, dysrhythmia, decreased systemic vascular resistance and mean arterial pressure (MAP), and increased pulmonary artery pressure, pulmonary artery wedge pressure and central venous pressure. It can be associated with acute acidosis, hypothermia, hyperkalemia and hyperfibrinolysis. It was first defined by Aggarwal et al. (1) as a decrease in MAP ≥30% from baseline for at least one minute within 5 minutes from graft reperfusion, and further classified by Hilmi et al.(2) into mild PRS (i.e., a <5 minutes-long decrease in blood pressure and/ or heart rate <30% of the anhepatic levels, responsive to calcium chloride and/or epinephrine intravenous boluses, without continuous vasopressors infusion requirement) and significant PRS (characterized by severe hemodynamic instability with hypotension [>30% of the anhepatic level], asystole, hemodynamically significant arrhythmias, and including also patients with prolonged and/or recurrent fibrinolysis). In severe cases, PRS can degenerate to cardiac arrest and on-table death after graft reperfusion.Pathogenesis of PRS is complex and incompletely understood. The cause of PRS is generally attributed to the interplay between metabolic acidosis, hyperkalemia, hypocalcemia, hypothermia, air embolism, and the hemodynamic effects of vasoactive substances released at the time of graft reperfusion. After graft reperfusion, many inflammatory cytokines (TNF-α, IL-1, IL-2, IL-8) are released into systemic circulation by the grafted liver. Others, like kallikrein, bradykinin, chemokines and activated complement factors are produced by the recipient in response to graft reperfusion. The importance of each of them in determining PRS, however, has not been elucidated so far (3).Incidence of PRS varies widely across different studies, ranging from 10% to 58%, and this is at least partially due to some heterogeneity in PRS definition (4-11). Incidence of PRS does not appear to have decreased in recent years; its occurrence is clinically relevant as it has been associated with the onset of postoperative acute kidney injury (AKI) (12,13), early allograft dysfunction, and, although less frequently, reduced graft and patient survival (8).Risk factors for PRS include donor [age, macrosteatosis, donation after circulatory death (DCD)] and recipient (severity of liver disease, previous myocardial dysfunction) features, and factors related to transplant operation (duration of cold and warm ischemia time, blood products transfusion and calcium requirements, surgical technique, hyperkalemia and hypothermia after graft reperfusion) (4,5,7,(10)(11)(12)14). The association between factors like donor age, graft macrosteatosis, donation after cardiac death and duration of cold ischemia time suggests that ischemia-reperfusion injury and onset of PRS are closely