Background
Coronary microvascular dysfunction (CMD) is a strong determinant of prognosis in patients with chronic coronary syndrome (CCS). The triglyceride-glucose index (TyG index), an alternative method to evaluate insulin resistance, is positively correlated with the incidence and adverse outcomes of cardiovascular diseases. However, the relationship between the TyG index and the presence and prognosis of CMD in CCS patients has not been investigated. Therefore, we aimed to evaluate the association between the TyG index and the presence and clinical outcomes of CMD among CCS patients.
Methods
CCS patients who underwent coronary angiography between June 2015 to June 2019 were included. The TyG index was calculated as Ln[fasting triglycerides (mg/dL) × fasting blood glucose (mg/dL)/2]. Coronary angiography‑derived index of microvascular resistance (caIMR) was used to measure microvascular function, and CMD was defined as caIMR ≥ 25U. Patients with CMD were divided into three groups (T1, T2, and T3 groups) according to TyG tertiles. The primary endpoint was major adverse cardiac event (MACE).
Results
Of 430 CCS patients, 221 patients had CMD. CMD patients had significantly higher TyG index than those without CMD. Sixty-three MACE was recorded during the follow-up duration among CMD patients, and the incidence rate of MACE was higher in the T3 group compared to T1/T2 groups (39.2% vs. 20.5% vs. 25.7%; P = 0.035). Multivariable logistic regression analysis showed that the TyG index was an independent predictor of CMD (OR, 1.436; 95% CI, 1.014–2.034; P = 0.042). Compared to the T1 group, the T3 group strongly correlated with the risk of MACE in CMD patients even after adjusting for additional confounding risk factors (HR, 2.132; 95%CI, 1.066–4.261; P = 0.032).
Conclusion
TyG index is significantly associated with the risk of CMD, and it is an independent predictor of MACE among CMD patients with CCS. This study suggests that the TyG index has important clinical significance for the early prevention and risk stratification of CMD.