Background: Identification of morphological risk factors associated with the knee that threaten ligaments is important for understanding injury mechanisms and prevention. However, the morphological risk factors for posterior cruciate ligament (PCL) lesions are not clearly understood. Purpose: To investigate whether the medial tibial depth (MTD), medial and lateral posterior tibial slope, asymmetry of the medial and lateral slopes, radius of the sagittal plane medial femoral condyle, coronal tibial slope, and notch width index (NWI) were risk factors for PCL intrasubstance tearing (PCLIT) and tibial avulsion fractures (PCLAF). Study Design: Cross-sectional study; Level of evidence, 3. Methods: Between January 2015 and March 2022, 82 patients with isolated PCLIT, 68 patients with isolated PCLAF, and 82 controls without any ligamentous or meniscal pathologic findings as determined via physical examination and magnetic resonance imaging were included. Values were compared among the 3 groups. Logistic regression analysis was performed to confirm the risk factors. Receiver operating characteristic curves were defined for the morphological indicators and combination of risk factors. Results: Logistic regression analysis revealed (1) MTD, lateral minus medial posterior tibial slope, radius of the posterior circle of the medial femoral condyle, and NWI as significant independent predictors for PCLIT and (2) MTD and NWI for PCLAF. The areas under the curve combining the 4 indicators for PCLIT and noncontact PCLIT were 0.79 (95% CI, 0.72-0.86) and 0.90 (95% CI, 0.85-0.96), respectively. The area under the curve for the combination of MTD and NWI for PCLAF was 0.78 (95% CI, 0.70-0.86). Conclusion: Decreased MTD and NWI were associated with an increased incidence of PCLIT and PCLAF. Increased asymmetry of the medial and lateral slopes and the radius of the posterior circle of the medial femoral condyle were associated with the presence of PCLIT. In addition, the model of a combination of risk factors showed good predictive ability for noncontact PCLIT. These findings may aid clinicians in identifying patients at risk for PCL lesions. Further studies are warranted for identifying the effect of these factors on biomechanical mechanisms.