Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Copper is a trace metal whose absence or deficiency can cause structural and functional alterations that can be corrected by copper administration. Copper excess is associated with significant liver toxicity, such as that seen in Wilson’s disease, which often exhibits liver steatosis and can be managed by copper sequestrants. Copper, due to its ability to either accept or donate electrons, is a cofactor in many physiological redox reactions, playing an essential role in cell energy homeostasis, detoxification of reactive oxygen species, and hepatic immunometabolism. Given these facts, it is reasonable to speculate that copper might be involved in the pathogenesis of liver fibrosis in the setting of metabolic dysfunction-associated fatty liver disease (MASLD). To address this research question, a narrative review of published studies was conducted, spanning from the needs, sources, and toxicity of copper to Menkes and Wilson’s disease. Most epidemiological studies have demonstrated that MASLD is associated with copper deficiency. However, several studies show that MASLD is associated with copper excess and very few conclude that copper is not associated with MASLD. Therefore, the putative pathomechanisms associating both copper excess and deficiency with MASLD development and progression are reviewed. In conclusion, epidemiological and pathogenic data support the notion that well-balanced copper homeostasis is a prerequisite for liver health. Accordingly, both copper excess and deficiency may potentially predispose to liver fibrosis via the development of MASLD. Therefore, studies aimed at restoring normal bodily stores of copper should be tailored according to precision medicine approaches based on the specific features of copper metabolism in individual MASLD patients.
Copper is a trace metal whose absence or deficiency can cause structural and functional alterations that can be corrected by copper administration. Copper excess is associated with significant liver toxicity, such as that seen in Wilson’s disease, which often exhibits liver steatosis and can be managed by copper sequestrants. Copper, due to its ability to either accept or donate electrons, is a cofactor in many physiological redox reactions, playing an essential role in cell energy homeostasis, detoxification of reactive oxygen species, and hepatic immunometabolism. Given these facts, it is reasonable to speculate that copper might be involved in the pathogenesis of liver fibrosis in the setting of metabolic dysfunction-associated fatty liver disease (MASLD). To address this research question, a narrative review of published studies was conducted, spanning from the needs, sources, and toxicity of copper to Menkes and Wilson’s disease. Most epidemiological studies have demonstrated that MASLD is associated with copper deficiency. However, several studies show that MASLD is associated with copper excess and very few conclude that copper is not associated with MASLD. Therefore, the putative pathomechanisms associating both copper excess and deficiency with MASLD development and progression are reviewed. In conclusion, epidemiological and pathogenic data support the notion that well-balanced copper homeostasis is a prerequisite for liver health. Accordingly, both copper excess and deficiency may potentially predispose to liver fibrosis via the development of MASLD. Therefore, studies aimed at restoring normal bodily stores of copper should be tailored according to precision medicine approaches based on the specific features of copper metabolism in individual MASLD patients.
BackgroundEvidence on the association between selenium and liver function parameters is limited and controversial.MethodsData on dietary selenium intake, blood selenium concentration, and liver function parameters were obtained from the National Health and Nutrition Examination Survey (NHANES) 2017–2020. Associations between selenium (dietary intake and blood concentration) and liver function parameters [alanine aminotransferase (ALT), aspartate aminotransferase (AST), the ALT/AST ratio, gamma-glutamyl transferase (GGT), and alkaline phosphatase (ALP)] were assessed using multivariate linear regression models. Subgroup analyses and interaction tests were conducted to examine differences in associations according to age, gender, body mass index (BMI), diabetes, and physical activity.ResultsThe study included 6,869 participants after screening. The multivariate linear regression model revealed that dietary selenium intake was positively associated with ALT (β = 0.112, 95% CI = 0.041, 0.183) and the ALT/AST ratio (β = 0.002, 95% CI = 0.001, 0.004) after adjustment for covariates. Results of blood selenium concentration also showed that higher blood selenium levels were positively associated with ALT (β = 0.436, 95% CI = 0.308, 0.564), AST (β = 0.112, 95% CI = 0.015, 0.208), and the ALT/AST ratio (β = 0.012, 95% CI = 0.009, 0.015). However, ALP decreased with increasing blood selenium concentration (β = −0.207, 95% CI = −0.414, −0.000). In addition, we found significant differences in the effect of selenium on liver function parameters according to age, gender, and BMI.ConclusionDietary selenium intake and blood concentration affect liver function parameters. These findings suggest that further research is needed to explore these associations to promote liver health and disease prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.