(1) Autophagy is an important biological process in cells and is closely associated with the development and progression of non-alcoholic fatty liver disease (NAFLD). Therefore, this study aims to investigate the biological function of the autophagy hub genes, which could be used as a potential therapeutic target and diagnostic markers for NAFLD. (2) Male C57BL/6J mice were sacrificed after 16 and 38 weeks of a high-fat diet, serum biochemical indexes were detected, and liver lobules were collected for pathological observation and transcriptome sequencing. The R software was used to identify differentially expressed autophagy genes (DEGs) from the transcriptome sequencing data of mice fed with a normal diet for 38 weeks (ND38) and a high-fat diet for 38 weeks (HFD38). Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the DEGs, a protein–protein interaction (PPI) network of the DEGs was established using the STRING data website, and the results were visualized through Cytoscape. (3) After 16 weeks and 38 weeks of a high-fat diet, there was a significant increase in body weight, serum total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and triglycerides (TG) in mice, along with lipid accumulation in the liver, which was more severe at 38 weeks than at 16 weeks. The transcriptome data showed significant changes in the expression profile of autophagy genes in the livers of NAFLD mice following a long-term high-fat diet. Among the 31 differentially expressed autophagy-related genes, 13 were upregulated and 18 were downregulated. GO and KEGG pathway analysis revealed that these DEGs were primarily involved in autophagy, cholesterol transport, triglyceride metabolism, apoptosis, the FoxO signaling pathway, the p53 signaling pathway and the IL-17 signaling pathway. Four hub genes were identified by the PPI network analysis, of which Irs2, Pnpla2 and Plin2 were significantly downregulated, while Srebf2 was significantly upregulated by the 38-week high-fat diet. (4) The hub genes Irs2, Pnpla2, Srebf2 and Plin2 may serve as key therapeutic targets and early diagnostic markers in the progression of NAFLD.