SummaryBackground Autophagy and neutrophil extracellular DNA traps (NETs) are implicated in asthma; however, their roles in asthma pathogenesis have not been elucidated. Objectives We compared autophagy and NET production levels from peripheral blood neutrophils (PBNs) of patients with severe asthma (SA) and non-severe asthma (NSA). Additionally, we investigated the inflammatory effects of NETs on human airway epithelial cells (AECs) and peripheral blood eosinophils (PBEs). Methods Peripheral blood neutrophils from patients with SA (n = 30) and NSA (n = 38) were treated with interleukin (IL)-8 (100 ng/mL). Autophagy (light chain 3-II expression) and NET production levels were evaluated by Western blot, immunofluorescence microscopy, and PicoGreen assay. The effects of NETs on AECs were assessed by investigating cell death, cell detachment, expression of occludin and claudin-1, and IL-8 production; the effects of NETs on PBEs were examined by investigating the activation and release of eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Results Untreated and IL-8-treated PBNs from the SA group produced higher autophagy and NET levels compared with those from the NSA group (P < 0.01). IL-8 increased autophagy and NET levels in PBNs from the SA group, but not from the NSA group. NET levels were correlated with autophagy levels in PBNs (P < 0.001). IL-8-induced NET production levels negatively were correlated with FEV1/FVC (r = À0.700, P = 0.016). NETs induced cell death, detachment, degradation of occludin and claudin-1, and IL-8 production from AECs. Higher levels of NET-induced ECP and EDN were released from PBEs in SA compared with NSA groups. Conclusions and Clinical Relevance Neutrophil autophagy and NETs could enhance asthma severity by damaging airway epithelium and triggering inflammatory responses of AECs and PBEs. Modulating neutrophil autophagy and NET production may be a new target therapy for SA.