BackgroundComplex traumatic injuries sustained by military personnel, particularly when involving extremities, often result in infectious complications and substantial morbidity. One factor that may further impair patient recovery is the persistence of infections. Surface-attached microbial communities, known as biofilms, may play a role in hindering the management of infections; however, clinical data associating biofilm formation with persistent or chronic infections are lacking. Therefore, we evaluated the production of bacterial biofilms as a potential risk factor for persistent infections among wounded military personnel.MethodsBacterial isolates and clinical data from military personnel with deployment-related injuries were collected through the Trauma Infectious Disease Outcomes Study. The study population consisted of patients with diagnosed skin and soft-tissue infections. Cases (wounds with bacterial isolates of the same organism collected 14 days apart) were compared to controls (wounds with non-recurrent bacterial isolates), which were matched by organism and infectious disease syndrome. Potential risk factors for persistent infections, including biofilm formation, were examined in a univariate analysis. Data are expressed as odds ratios (OR; 95% confidence interval [CI]).ResultsOn a per infected wound basis, 35 cases (representing 25 patients) and 69 controls (representing 60 patients) were identified. Eight patients with multiple wounds were utilized as both cases and controls. Overall, 235 bacterial isolates were tested for biofilm formation in the case–control analysis. Biofilm formation was significantly associated with infection persistence (OR: 29.49; CI: 6.24-infinity) in a univariate analysis. Multidrug resistance (OR: 5.62; CI: 1.02-56.92), packed red blood cell transfusion requirements within the first 24 hours (OR: 1.02; CI: 1.01-1.04), operating room visits prior to and on the date of infection diagnosis (OR: 2.05; CI: 1.09-4.28), anatomical location of infected wound (OR: 5.47; CI: 1.65-23.39), and occurrence of polymicrobial infections (OR: 69.71; CI: 15.39-infinity) were also significant risk factors for persistent infections.ConclusionsWe found that biofilm production by clinical strains is significantly associated with the persistence of wound infections. However, the statistical power of the analysis was limited due to the small sample size, precluding a multivariate analysis. Further data are needed to confirm biofilm formation as a risk factor for persistent wound infections.