Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Workplace may not only increase the risk of heat-related illnesses and injuries but also compromise work efficiency, particularly in a warming climate. This study aimed to utilize machine learning (ML) and deep learning (DL) algorithms to quantify the impact of temperature discomfort on productivity loss among petrochemical workers and to identify key influencing factors. Methods A cross-sectional face-to-face questionnaire survey was conducted among petrochemical workers between May and September 2023 in Fujian Province, China. Initial feature selection was performed using Lasso regression. The dataset was divided into training (70%), validation (20%), and testing (10%) sets. Six predictive models were evaluated: support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), Gaussian Naive Bayes (GNB), multilayer perceptron (MLP), and logistic regression (LR). The most effective model was further analyzed with SHapley Additive exPlanations (SHAP). Results Among the 2393 workers surveyed, 58.4% (1,747) reported productivity loss when working in high temperatures. Lasso regression identified twenty-seven predictive factors such as educational level and smoking. All six models displayed strong prediction accuracy (SVM = 0.775, RF = 0.760, XGBoost = 0.727, GNB = 0.863, MLP = 0.738, LR = 0.680). GNB model showed the best performance, with a cutoff of 0.869, accuracy of 0.863, precision of 0.897, sensitivity of 0.918, specificity of 0.715, and an F1-score of 0.642, indicating its efficacy as a predictive tool. SHAP analysis showed that occupational health training (SHAP value: -3.56), protective measures (-2.61), and less physically demanding jobs (-1.75) were negatively associated with heat-attributed productivity loss, whereas lack of air conditioning (1.92), noise (2.64), vibration (1.15), and dust (0.95) increased the risk of heat-induced productivity loss. Conclusions Temperature discomfort significantly undermined labor productivity in the petrochemical sector, and this impact may worsen in a warming climate if adaptation and prevention measures are insufficient. To effectively reduce heat-related productivity loss, there is a need to strengthen occupational health training and implement strict controls for occupational hazards, minimizing the potential combined effects of heat with other exposures. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-024-20713-4.
Background Workplace may not only increase the risk of heat-related illnesses and injuries but also compromise work efficiency, particularly in a warming climate. This study aimed to utilize machine learning (ML) and deep learning (DL) algorithms to quantify the impact of temperature discomfort on productivity loss among petrochemical workers and to identify key influencing factors. Methods A cross-sectional face-to-face questionnaire survey was conducted among petrochemical workers between May and September 2023 in Fujian Province, China. Initial feature selection was performed using Lasso regression. The dataset was divided into training (70%), validation (20%), and testing (10%) sets. Six predictive models were evaluated: support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), Gaussian Naive Bayes (GNB), multilayer perceptron (MLP), and logistic regression (LR). The most effective model was further analyzed with SHapley Additive exPlanations (SHAP). Results Among the 2393 workers surveyed, 58.4% (1,747) reported productivity loss when working in high temperatures. Lasso regression identified twenty-seven predictive factors such as educational level and smoking. All six models displayed strong prediction accuracy (SVM = 0.775, RF = 0.760, XGBoost = 0.727, GNB = 0.863, MLP = 0.738, LR = 0.680). GNB model showed the best performance, with a cutoff of 0.869, accuracy of 0.863, precision of 0.897, sensitivity of 0.918, specificity of 0.715, and an F1-score of 0.642, indicating its efficacy as a predictive tool. SHAP analysis showed that occupational health training (SHAP value: -3.56), protective measures (-2.61), and less physically demanding jobs (-1.75) were negatively associated with heat-attributed productivity loss, whereas lack of air conditioning (1.92), noise (2.64), vibration (1.15), and dust (0.95) increased the risk of heat-induced productivity loss. Conclusions Temperature discomfort significantly undermined labor productivity in the petrochemical sector, and this impact may worsen in a warming climate if adaptation and prevention measures are insufficient. To effectively reduce heat-related productivity loss, there is a need to strengthen occupational health training and implement strict controls for occupational hazards, minimizing the potential combined effects of heat with other exposures. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-024-20713-4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.