The C825T variant of the G-protein β 3 subunit (GNB3) gene has attracted renewed attention as a candidate gene for obesity, hypertension and hyperuricemia. The main role of G-protein is to translate signals from the cell surface into a cellular response. The 825T allele is associated with a splice variant of GNB3 protein and enhanced G-protein activation. We examined the relationship between this variant and the risk of hyperuricemia in Japanese workers. The study subjects were 1,452 men and 1,169 women selected from 3,834 men and 2,591 women in 1997. On the basis of common clinical criteria, hyperuricemia I was defined as serum uric acid 7.0 mg/dl in men and 6.0 mg/dl in women or taking antihyperuricemic medication. The hyperuricemia I group consisted of 186 men and 20 women and its control of 1,266 men and 1,149 women. Hyperuricemia II was defined as serum uric acid > 5.7 mg/dl (median) in men and 3.9 mg/dl (median) in women or taking antihyperuricemic medication. The hyperuricemic II group consisted of 684 men and 570 women and its control of 768 men and 599 women. To replicate previous significant results in young Caucasian men, we selected these criteria because the authors of the study in young Caucasian men adopted the median in their subjects as a cut-off. The statistical power was estimated as 99% based on the significant results in Caucasians. Genotype and allele distributions in men and women with hyperuricemia I and II were not significantly different from those in the corresponding control groups. Logistic regression analysis on hyperuricemia I and II, and multiple regression on serum uric acid level demonstrated no significant effect of the C825T genotype. Despite the sufficient statistical power, this study could not demonstrate the significant influence of C825T on hyperuricemia or serum uric acid. The targeting of this polymorphism is unlikely to be beneficial in the prevention of hyperuricemia in the general Japanese population.