The digestive tract can be considered a bioreactor. High levels of reactive oxygen species (ROS) during digestion may predispose for local and/or systemic oxidative stress and inflammation, e.g., inflammatory bowel diseases. Food items rich in antioxidants may prevent such aggravation. This investigation analyzed pro-and antioxidant patterns of food matrices/items following in vitro digestion. Gastrointestinal digestion reflecting typically consumed quantities was performed on nine food items (orange and tomato juice, soda, coffee, white chocolate, sausage, vitamin C and E, and curcumin) and their combinations (n = 24), using the INFOGEST model. Antioxidant potential was measured by FRAP, DPPH, and ABTS, and pro-oxidant aspects by MDA (malondialdehyde) and peroxide formation. An anti-pro-oxidant score was developed, combining the five assays. Liquid food items showed moderately high antioxidant values, except for coffee and orange juice, which exhibited a high antioxidant potential. Solid matrices, e.g., white chocolate and sausage, showed both high pro-oxidant (up to 22 mg/L MDA) and high antioxidant potential (up to 336 mg/L vitamin C equivalents) at the same time. Individual vitamins (C and E) at physiological levels (achievable from food items) showed a moderate antioxidant potential (<220 mg/L vitamin C equivalents). Overall, both antioxidant and pro-oxidant assays correlated well, with correlation coefficients of up to 0.894. The effects of food combinations were generally additive, i.e., non-synergistic, except for combinations with sausage, where strong quenching effects for MDA were observed, e.g., with orange juice. In conclusion, as especially highlighted by complex matrices demonstrating both pro- and antioxidant potential, only measuring one aspect would result in physiological misinterpretations. Therefore, it is imperative to employ a combination of assays to evaluate both pro- and antioxidant properties of food digesta to ensure physiological relevance.